
The Quest editor
- system architecture –

The Quest architecture

 Object types

The Quest engine contains “types” for every single entity. Like item types, monster types, disease
types, and so on. Sometimes a type needs a base type, of course these have different properties,
and more types can have the same base type.

Type Type contains Base type Base type contains
Picture type ID, the picture data

itself
- -

Palette type ID, The palette data
itself

- -

Item type ID, Palette IDs,
properties (weight, ac,
…), enchantment,
enchant storage, …

Item base
type

ID, Picture IDs (inventory and drop),
and property hints for its item types

Monster type ID, Palette IDs,
properties (ac, hp,
attributes, …), random
items, spells/abilities

Monster
base type

ID, Picture IDs (frame pictures),
property hints for its monster types,
sound effect IDs

Map Object type Picture IDs, type, flags,
sound effect IDs

- -

Ability type ID, enchant entries - -
Alchemy Recipe
type

ID, needed effects,
target potion properties

- -

Disease type ID, enchant entries - -
Global type ID, value - -
Interior picture
type

ID, Picture frame IDs,
Music ID

- -

Face type ID, Picture ID - -
NPC type ID, properties (face ID,

shop/services, race,
…), dialogue

- -

Quest type ID, description - -
Scene type ID, music ID, views

(picture IDs, text)
- -

Script type ID, compiled code - -
Sky type ID, picture ID, cloud,

fog color, …
- -

Sound wav type ID, wav data itself - -
Sound mod type Header, patterns, … Sound mod

base type
Samples

Spell effect type ID, picture IDs - -
Spell type ID, move/explode effect

ID and sound ID,
properties

- -

There are some more types, f.e. skill, race and attribute types – but these are restricted.

 Identifiers in the game engine

Every identifier contains its world’s ID. The base game has more “worlds”:

World ID Contains Filename
base Maps, monster types, item types, and

more
TheQuestBase

bres Pictures, palettes, monster base types,
item base types, and more

TheQuestRes

bsnd Sound wav types TheQuestSound
bmus Sound mod and mod base types TheQuestMusic

The “base” world uses some types from the “bres” world, and so on.
An identifier in the base world could be “base_something”, this means every single “type” ID’s first
4 characters must be the world’s ID (then there must be a _ sign).

These IDs are unique in the actual types’s array. F.e. there could be a “base_monster1”
monster type and base monster type, or global, anything. Just there cannot be two monster types
with the same ID.

 Map architecture

There are two types of maps in the game engine, “dungeon maps” and “surface maps”.

A dungeon map always contains 35x35 positions.
A surface map contains 21x21 positions, and the game loads the surrounding “border” positions
from 8 different surface maps – so the game always use the 35x35 as map size.

Every single map contains ID, the default background (floor) and ceiling (for dungeon maps) map
object type IDs, properties (flags, fog color, view distance, …), and the following collections:

Collection Entry
Objects Map objects, some “Map Object types” need

existing map object. See below.
Monsters Each monster specifies the current HP, flags

and the monster’s monster type
ItemLists It contains items, and each item specifies the

item type, the enchantment and the quality

Npc dialogue system

Every npc in the game can have greeting topics and talk topics.
Each topic (both greeting topics and talk topics) has responses, and talk topics has a name. This
name will be displayed at the right side of the screen, so the player can choose any of them (ask
about something);.
Each response has up to 5 conditions, and the engine picks the first response where all the

conditions are true. Condition description: see below.
And of course each response has a result text, result answers and result script.
Result text: the displayed text. It isn’t a script! No message commands, just a huge edit box in the
Editor. So you can enter anything, and can use macros (to include something in the text –
description: see later).
Result answers: available answers for the response.
Each result answer has a condition (one condition for each answer). It isn’t a script, but edit
boxes in the editor.The game won’t display an answer if its condition is false.
Result script: the script, at least
These will be small scripts, and will be executed after the actual response is displayed. Shouldn’t
contain other things just add quest, reward, set globals, and so on (the logic of the response).

This system, as you can see, replace the ugly and uncomfortable if – else – if – else architecture.
Every script in Legacy could be converted into the new architecture (message -> result text,
answer -> defined answers, logic after messages -> result script).

How it starts…

When the player starts a conversation with an NPC, the engine picks a greeting from the greeting
list of that NPC. The greeting list has topics which can be local ones (defined for this NPC) or
shared ones (defined in the “shared dialogues” section, but this NPC use that as well).

The engine always start with the first greeting topic, so it must be well-organized by importance
and priority. For example: if the player is criminal, then the NPC should mention that instead of
the outfit.

The shared greetings can have many entries, and of course these won’t be used for all NPCs.
For example:
You define a shared topic, and set all the NPCs in a city to have that (but no others!). Now the
NPCs in that town could tell you about city (or area) – related info.

Conditions in the system

All the responses and answers may (should) have conditions.
A condition looks like this:

Content:

First box Second box Description
Always - Always true. You can use this for answers, to make them visible every

time. For normal responses, it doesn’t have any meaning.
Answer - Returns the selected answer’s number. 0 if there hasn’t been any

answers to be chosen, otherwise 1-4.
Important: if a response doesn’t have Answer as a condition, but the
Answer is not 0, the response won’t be displayed.

PCCrime - Returns the the PC Crime Level (the bounty value).
1. City guards will catch you if this is above 0.
3. Availabe range: 0 – 1000. Only serial killers could have this above
100.
4. Certain NPCs could take care of this “problem”, for money of
course.
5. The money to be payed when the guards catch the PC: Crime Level
* 100

PCHasCrimeGold - Whether the player has enough money to pay (when guards catch
him). Crime Level*100,

PCFame - Fame of the PC, the starting value will be 0 of course.
Range: -100 .. +100

If the player does good things then the fame should increase,
otherwise decrease. So this is a kind of “alignment”:
-100: pure evil, 0: neutral, +100: saint.

PCGood - PCFame>0
PCEvil - PCFame<0
PCOutfit - Outfit quality. Valid range: 0 – 100.

0: naked, 100: hiq armor.
This value is updated frequently (when the player
wears/wields/removes something).

PCHPPercent - HP/Max HP Percent of the PC (0-100)
PCLevel - Level of the PC (1-)
PCRace Race If the player’s race is the same as the selected
PCUndead - Whether the PC is undead (the Race is “Rasvim”)
PCAc - Player character’s armor class.
PCAttribute Attribute name PC’s attribute value (strength, dexterity, …)
PCSkill Skill name PC’s skill value (block, heavy weapon, …)
PCSameRace - The PC’s race is the same race as the NPC’s.
PCHasItem Item type ID The number of items the PC has of the specified itemtype
PCDiseased Disease ID Whether the PC is diseased (the Disease ID can be empty – means

any diseases)
PCKnowsSpell Spelltype ID Whether the PC knows the spell
PCHasSavedXp - Whether the PC has saved XP (the removed XP can be marked as

“can be restored”). It can be restored with a specific script function.
PCHasGold Gold value Whether the PC has the specified amount of gold
PCHasAbility Ability ID Whether the PC has the specified ability
PCWearWield Item type ID Whether the PC wears/wields an item with the specified item type
PCPoisoned - Whether the PC is poisoned
PCParalyzed - Whether the PC is paralyzed
PCCursed - Whether the PC is cursed
PCQuestReceived Quest ID Whether the PC has received the quest
PCQuestCompleted Quest ID Whether the PC has received the quest, and the quest succeeded.
PCQuestFailed Quest ID Whether the PC has received the quest, but the quest failed
Random100 - Random number between 0 and 99 (inclusive)
ObjState Map Object ID State of the specified Map Object
ObjThisState - State of the current Map Object
NPCLikesPC - Whether the actual NPC likes the PC
WeatherCloud - The actual cloud (0: clear sky, 100: cloudy)
WeatherRain - The actual rain (0: no rain, 100: heavy rain)
TimeHour - Hour of the current day
TimeDay - Current day no
Daylight - The hour is between 6 and 21 (inclusive)
Night - The hour is between 22 and 5 (inclusive)
CurrentMap Map ID Whether the current map is the specified
CurrentWorld World ID Whether the current world is the specified
Global Global ID Value of the specified Global
DiffTimeHour Global ID The difference between the current time and the specified global’s

value (in hours)
DiffTimeDay Global ID The difference between the current time and the specified global’s

value (in days)
MonsterDead Map object ID Whether the monster is dead (specified by the monster’s object)
MonsterAggressive Map object ID Whether the monster is aggressive (specified by the monster’s object)
MonsterPoisoned Map object ID Whether the monster is poisoned (specified by the monster’s object)
MonsterDiseased Map object ID Whether the monster is diseased (specified by the monster’s object)
MonsterParalyzed Map object ID Whether the monster is paralyzed (specified by the monster’s object)
MonsterCursed Map object ID Whether the monster is cursed (specified by the monster’s object)
ObjectListResult - Whether an ObjectListResult exists
PCMale - Whether the PC is male
CurrentMap Map ID Whether the current map is the specified
CurrentWorld World ID Whether the current world is the specified
MonsterThisAggressive - Whether the current monster is aggressive
MonsterThisPoisoned - Whether the current monster is poisoned
MonsterThisDiseased - Whether the current monster is diseased
MonsterThisParalyzed - Whether the current monster is paralyzed
MonsterThisCursed - Whether the current monster is cursed
MonsterThisBaseType Monster Base Type

ID
Whether the current monster belongs to the specified monster base
type

MonsterThisType Monster Type ID Whether the current monster belongs to the specified monster type

Macros in responses

In the result text, you can use macros.
Every macro looks like this: %Something%. The system will change that to the meaning. If you
want to display a % sign in the text, use %%.

Macro Meaning
%PCName% PC’s name
%PCRace% PC’s race
%PCCrimeGold% 100*PCCrime
%PCGold% PC’s Gold
%Day% The actual day
%Date% Something like “Day 2, 6:02 PM”
%Global:global_id%> Value of the specified global
%PCDisease% One of the diseases (if any) the player has been infected with. Can be empty string, of

course.
%Map% Current map’s name
%AAN% “a” or “an”
%CAAN% “A” or “An”
%NPCName% The actual NPC’s name

Item architecture

Like everything else in The Quest, item types have IDs. Every single items belongs to an “Item
type”, and every item type belongs to a “Base item type”.

Item classes/subclasses

The item classes and subclasses in the game are the following:
- Weapon: Hand (fixed type), Short sword, Long sword, Mace, Axe, Hammer, Club, Magic staff,
Throwing, Short bow, Long bow, Quiver, Crossbow (not implemented), Bol quiver (not
implemented)
- Armor: Shield, Armored pants, Armor, Helm, Gauntlets, Boots, Cloak, Belt
- Light armor: Shield, Armored pants, Armor, Helm, Gauntlets, Boots, Cloak, Belt
- Accessory: Amulet, Ring
- Book: Book, Letter, Map
- Alchemy: Mortar/pestle
- Alchemy ingredient: Ingredient
- Potion: Potion
- Magic: Scroll, Spellbook, Blank scroll, Wand
- Money: Money
- Key: Key, Lockpick
- Repair: Hammer
- Misc: Misc
- Comestible: Food, Water
- Gem: Gem
- Card: Card

Base item type

The base item types contain the bitmaps, and the default base data for its item types.
When you make a new item type, you select a base item type as a parent.
Every item base type specified its “item class” and “item subclass”.

Item type

The item types are the actual entities you work with.
Let’s say there’s a Blade, with the ID of “base_weapon_blade”.
If you want to make a blade which needs to have +1 minimal and +1 maximal damage, you make
a new item type, name it as f.e. “base_weapon_bladespecial”, and you modify the damage
values. So now the Blade base item type has 2 children, “base_weapon_blade” and
“base_weapon_bladespecial”.
The item type has exactly the same “item class” and “item subclass” as its parent.

Item

Every item belongs to an item type, that’s all. You can’t modify an item, just an item type.

Checking the inventory

You can check whether the inventory (of the player, of a shelf, of a monster, …) contains the
specified “item type”.

If(player.hasitem(“base_weapon_bladespecial”,1))
… means … does the player have at least one item with the item type of
“base_weapon_bladespecial” ?

Auto-items

Every item type has a setting: “Auto-style”. This can be either “none”, “cheap”, “normal”, “better”,
“best”, “superior”.
If you add a “cheap random” item to a shelf (monster, …), then the engine replaces it with a
random item of the item types which has “cheap” as auto-style.
Quest items should be signed as “none”. It wouldn’t be good if the player finds the grail in a
barrel. On the streets of a small village. Other attributes of the item can be signed--f.e., if you
don’t want the item to be sold.

Item quality

The item classes/subclasses may need or don’t need the “quality” setting.
The quality can be between 0 and 65535. An armor with 65535 as quality may never need repair
at all – however its state modifies the final values (damage, ac, …). A knife with 1000 as quality
may need regular repair.

Class/subclass Meaning
Weapon/all subclasses Every weapon loses quality as you fight with them – so the quality

defines how often you need to repair them. An ancient weapon may
not need a repair at all, because of extraordinary high quality.

Heavy armor/Light
armor, all subclasses

Every armor loses quality as it decreases the damage the monsters
try to apply on the player. Also, an ancient armor may not need repair.

Accessory/all subclasses Don’t need the quality – the amulets and rings never lose quality.
Book/all subclasses Don’t need the quality
Alchemy/all subclasses A mortar/pestle loses quality as the player uses it to make new

potions. The quality loss depends on the player’s skill.
Ingredient Don’t need the quality
Potion Don’t need the quality
Magic Don’t need the quality
Key/lockpick A lockpick loses quality as the player uses it to pick locks. The quality

loss depends on the player’s skill.
Repair/hammer A repair hammer loses quality as the player uses it to repair items.

The quality loss depends on the player’s skill.
Misc Don’t need the quality

Comestible The quality defines the overall state of the food/water. If it’s too low,
the food could be poisonous.

Gem Don’t need the quality
Card Don’t need the quality

Outfit Quality

Every weapon, armor, accessory has an outfit quality data (0-10). The final outfit value will be
calculated by the system. The most important component is the armor (weighted), I mean its outfit
quality.

Required alignment

Every item can specify the required alignment – which means the fame. If the item specifies “evil”
as required alignment, then the player with positive fame can’t equip it.

Monster architecture

Like everything else in The Quest, monster types have IDs. Every single monster belongs to a
Monster type, and every Monster Type belongs to a Base Monster Type.

Monster families

Monsters don’t have such “race” info as the player does. Both Base Monster Types and Monster
Types have a “family” info (of course the data in the Base Monster Types is just a hint – its
children, the Monster Types could set another). The family can be one of the following:
humanoid, creature, undead, citynpc.
This is important – since certain weapons can be enchanted to do extra damage against one of
these families.F.e. “The executioner” sword which does +50% damage against humanoids.

Base Monster Types

The Base Monster Types have the bitmap info, and hints for its children, the Monster Types. The
hints cover the damage, ac, attributes, and so on. When you make a new Monster Type, its data
is filled from the parent Base Monster Type. Then you can change anything.
Important: the data in the Base Monster Types means per level, f.e. a Dragon usually has 10
hp/level (just an example). So the base hp for your Dragon Monster Type (level 10) will be 100,
but you can modify this easily.

Monster Types

The Monster Types mean everything in the game about monsters. Their properties, items, spells,
resistance, hp, damage, and so on. Every Monster Type contains the Level information – so if
you need a Level 10 Dragon and a Level 11 one, those are separate Monster Types!
Every Monster Type have exactly 1 parent, a Base Monster Type.

Monsters

Every Monster has exactly 1 parent, a Monster Type.

Monsters have limited own data – that’s why there could be hundreds of them around the
world, still takes very low amount of memory. They have Hp information (while the
Max Hp comes from the Monster Type), and the engine keeps a database about
Monster diseases and other modifiers globally – since (normally) just a few of them
have any diseases.
They have a have flags, btw:
- Aggressive: the Monster Type can have the Aggressive flag set, while the actual
monster can be peaceful (and you can change it from script).
- Visible: They’re all visible initially, you can also change it from script.

Placing monsters on the map

You need to select a Monster Type, then put it on the map. That’s all.

Scripting monsters

Monsters can have more scripts…
1. One defined for their “Object”, like in Legacy, like for Map Objects.
2. One defined for their “Monster Type”.

The order is the following:
1. If the monster has an Object and it has a script, then the engine will run that if an

event occurs.
2. If the monster doesn’t have an Object, or the Object doesn’t have script or the Object

script calls the Default() function, then the engine runs the script defined for the
Monster Type.

Creating, re-creating, removing monsters/monster types

There are certain script commands to create, re-create and remove monsters:
1. RemoveMonsterTypes (monstertypeid)

This will remove the monsters (which belong to the specified Monster Type) from the
current map.

2. CreateMonsterObj (monstertypeid,mapobjid)
The will create a monster (with a Monster Type specified by monstertypeid), and place it
at the map object (specified by mapobjid).

3. CreateMonsterPos (monstertypeid,x,y)
This will create a monster (with a Monster Type specified by monstertypeid), and place it
at x,y position of the current map.

4. CreateMonsterDir (monstertypeid,dir,distance)
This will create a monster (with a Monster Type specified by monstertypeid), and place it
at dir of the player, at distance. F.e. CreateMonsterDir(“base_mymonster”,”north”,5) – this
will create the monster 5 squares away from the player, to north.

Monster -> NPC

The Monster Type needs to specify whether it’s an NPC or not.
So when you create a monster, then you may create an NPC as well – it depends on the NPC
setting of the Monster Type.

Monster’s resistance/spell knowledge/other modifiers

Every monster type can have unlimited number of modifiers (called enchantment):

Enchant type Enchant effect Data range

Constant Fortify magic -100%..+100%
Fortify melee -100%..+100%
Fortify spell A spell, -100%..+100% (fortify a specific

spell – if the monster casts it)
Resist diseases -100%..+100%
Resist magic -100%..+100%
Resist normal weapons -100%..+100% (normally undeads should

resist normal weapons – this means a
weapon w/o an enchantment)

Resist paralysis -100%..+100%
Resist poison -100%..+100%
Resist spell A spell, -100%..+100% (resist a specific

spell)
Spell knowledge A spell 10%..100% (When the monster would like

to cast a spell, the system picks one from
the list). The sum of the % values doesn’t
have to be 100%.

When attack Curse 10..100% (during melee attack, how often
will the attack result in cursing)

Drain hp 10..100%
Drain sp 10..100%
Infect disease A disease, 10..100%
Level drops 10..100%
Paralyze 10..100%
Poison 10..100%

Script architecture

Certain objects can have scripts in the system:

Place description
Map object Similar to the object script in Legacy. The difference is, one script can be used more

times, at different places. Available events: stepon, stepoff, use, hit, spell (yes, now
map objects can check what weapon the player has used to hit them, or what spell
has been cast).

NPC The NPCs can have scripts. Also can be used by more NPCs. Such script could
calculate complex values, set a global, the NPC’s dialog conditions can check the
global. Available events: use (as a talk), die.

Monster Similar to an NPC’s script. Could calculate complex values.
Available events: use (as a talk), hit, spell, die.

Dialogue/response Now each response can have own script – it cannot be used more times. These are
usually small scripts, the logic of the response (add/complete quest, set player’s
values, and so on). NO events! The right script is executed when its parent response
is being displayed.

Item The item types can have scripts. So something could happen if the player
wears/wields/removes an item. Available events: wear, wield, remove, hit.

Spell It could be used to create complex spells. Available events: spell.

Now the script system uses compression (compilation), so these scripts are much smaller then
the ones in Legacy.

IMPORTANT
Every script in the system first needs to check the actual event !!!
F.e.

if(IsEventUse())
{

 Message(“You can’t use this”);
}

Script commands

There are several script command families, explained below.

Global commands

These commands modify the global system or requests its properties.

Command Meaning Example
GetGlobal (globalid) Read the specified global’s value

(can be either string or number)
Var=GetGlobal(“base_myglobal”);

SetGlobal (globalid,value) Sets the specified global’s value
(can be either string or number)

SetGlobal(“base_myglobal”, ”myvalue”);

IsDayLight () Returns whether the time is
between 6 and 21 (inclusive)

If(IsDayLight())
 Message(“daylight”);

IsNight () Returns whether the time is
between 22 and 5 (inclusive)

If(IsNight())
 Message(“night”);

GetTime () Returns the current time (the
elapsed game minutes since the
game start)

Time=GetTime();

GetDay () Returns the current day no Day=GetDay();
GetHour () Returns the current hour of the day Hour=GetHour();
GetMinute () Returns the current minute of the

hour
Minute=GetMinute();

GetDayDiff (time) Returns the difference between
the current time and the specified
time (in days)

Daydiff=GetDayDiff(
 GetGlobal(“base_savedtime”));

GetHourDiff (time) Returns the difference between
the current time and the specified
time (in hours)

Hourdiff=GetHourDiff(
 GetGlobal(base_savedtime”));

GetMinuteDiff (time) Returns the difference between
the current time and the specified
time (in minutes)

Minutediff=GetMinuteDiff(
 GetGlobal(“base_savedtime”));

GetDamage () Returns the actual damage (can
be used in “hit” or in “spell” events)

If(GetDamage()>10)
 SetDamage(10);

SetDamage (damage) Sets the actual damage (can be
used in “hit” or in “spell” events)

If(GetDamage()>10)
 SetDamage(10);

IsSpell (spelltypeid) Returns whether the actual spell is
the specified one (can be used in
“spell” events)

If(IsSpell(“base_spburninghand”))
 SetDamage(0);

IsWeapon (itemtypeid) Returns whether the actual
weapon is the specified one (can
be used in “hit” events)

If(IsWeapon(“base_mysword”))
 SetDamage(GetDamage()*2);

ItemValue (itemtypeid) Returns the value of the specified
item type

If(ItemValue(“base_mysword”)>10000)
 Message(“It’s really expensive!”);

IsCurrentMap (mapid) Whether the actual map is the
specified one

If(IsCurrentMap(“base_mymap1”))
 Message(“Welcome to my map!”);

IsCurrentWorld (worldid) Whether the actual world is the
specified one

If(IsCurrentWorld (“xxxx”))
 Message(“I shouldn’t be here…”);

CreateObjectList (title) Creates a selection list CreateObjectList (“Which item do you
want?”);

AddObjectToList (id,title) Add an object to the list AddObjectToList (“base_mysword”,
 ”The sword”);

ShowObjectList () Finalized the object selection list ShowObjectList();
GetObjectListResult () Returns the selected item entry’s

ID. Empty if cancelled.
Item=GetObjectListResult();
If(item!=””)
 Player.ReceiveItem(item);
else
 Message(“Goodbye, then.”);

Message (message) Displays a message Message(“hello!”);
Random (max) Returns a random value between

0 and max-1 (inclusive)
If(Random(50)>40)
 Message(“Hey!”);

TalkNPC (npcid) Initiate a conversion with an NPC TalkNPC(“base_mynpc”);

SetMapFog (mapid, viewdistance,
fogcolor);

Sets a dungeon map’s fog and
relative view distance.
Viewdistance: 0-100 (inclusive).
Fogcolor: f.e. “FF0000”, hex rgb
color (first two digits – red, then
green and blue).

SetMapFog(“base_mymap”,70,”FFFF00”);

ResetMapFog (mapid) Resets the specified map’s relative
view distance and fog color.

ResetMapFog(“base_mymap”);

GetWeatherCloud () Returns the actual cloud (0..100,
inclusive)

Cloud=GetWeatherCloud();

SetWeatherCloud (skyid,cloud) Sets the actual cloud. The sky id
can be empty for normal skies and
a valid skytype id for spec ones.

SetWeatherCloud(“base_mysky”,0);

GetWeatherRain () Returns the actual rain. Rain=GetWeatherRain();
SetWeatherRain (rain) Sets the actual rain. SetWeatherRain(100);
RemoveMonsterTypes
(monstertypeid)

Remove the monsters of the
specified monster types from the
actual map.

RemoveMonsterTypes(“base_mymonster”);

CreateMonsterObj (monstertypeid,
mapobjid)

Creates a monster of the specified
monster type and places it at the
specified map object.

CreateMonsterObj (“base_mymonster”,
 “base_monspos”);

CreateMonsterPos (monstertypeid,
x, y);

Creates a monster of the specified
monster type and places at at x,y
of the current map. The x and y is
between 0-34 for dungeon maps
and 0-20 for surface maps.

CreateMonsterPos (“base_mymonster”,
 10,10);

CreateMonsterDir (monstertypeid,
dir, distance);

Creates a monster of the specified
monster type and places it at [dir]
of the player, at [distance]
distance. The dir can be “north”,
“sound”,”west” or “east”.

CreateMonsterPos (“base_mymonster”,
 “north”,2);

PlaySound (soundid) Plays a sound PlaySound (“base_hitmiss”);
PlayMusic (musicid) Plays a music PlayMusic (“base_surfaceday”);
AttractMonsters (distance) Attracts nearby monsters.

Monsters with objects cannot be
attracted by this command.

AttractMonsters (3);

CalmMonsters (distance) Calms nearby monsters down.
Monsters with objects cannot be
calmed down by this command.

CalmMonsters (3);

PlayScene (sceneid) Plays a scene (intro…) PlayScene (“base_intro”);
PlayCard (cardskill) Initiates a card play. The

opponent’s card skill can be
defined between 1 and 100
(inclusive). Not supported.

PlayCard (100);

EvtStepOn () Whether the actual event is
“stepon”

If(EvtStepOn())
{
 …
}

EvtStepOff () Whether the actual event is
“stepoff”

If(EvtStepOff())
{
 …
}

EvtItemChange () Whether the actual event is
“itemchange”

If(EvtItemChange())
{
 …
}

EvtHit () Whether the actual event is “hit” If(EvtHit ())
{
 …
}

EvtSpell () Whether the actual event is “spell” If(EvtSpell ())
{
 …
}

EvtUse () Whether the actual event is “use” If(EvtUse ())
{
 …
}

EvtDie () Whether the actual event is “die” If(EvtDie ())

{
 …
}

EvtWear () Whether the actual event is “wear”.
Not supported.

If(EvtWear())
{
 …
}

EvtWield () Whether the actual event is
“wield”. Not supported.

If(EvtWield())
{
 …
}

EvtRemove () Whether the actual event is
“remove”. Not supported.

If(EvtRemove())
{
 …
}

IsEvent (eventname) Whether the actual event is the
specified one.

If(IsEvent(“use”))
{
 …
}

Default () Runs the specified implementation
of the current object.

Default();

QuestionYesNo (question) Displays a question, with Yes and
No buttons.

QuestionYesNo(“Do you want to touch it?”);

QuestionOkCancel (question) Displays a question with Ok and
Cancel buttons.

QuestionOkCancel(“You enter the tomb.”);

Answer () Returns the answer for the
Question. 1: Yes/Ok, 0: No/Cancel

If(Answer()==1)
 Message(“Then let it be.”);

Goodbye () Terminates the dialogue
conversation (has no effect in
normal scripts!)

Goodbye();

Player commands

Command Meaning Example
AddQuest (questid) Adds a quest to the player Player.AddQuest(“base_myquest”);
SolveQuest (questid) Sets the quest as solved. Player.SolveQuest(“base_myquest”);
FailQuest (questid) Sets the quest as failed. Player.FailQuest(“base_myquest”);
HasQuest (questid) Whether the player has received

the quest.
If(Player.HasQuest(“base_myquest”))
 Message(“You already have your quest.”);

IsQuestFailed (questid) Whether the quest has failed. If(Player.IsQuestFailed(“base_myquest”))
 Message(“That quest has failed.”);

IsQuestSolved (questid) Whether the quest has been
solved.

If(Player.IsQuestSolved(“base_myquest”))
 Message(“That quest has been solved.”);

RemoveQuest (questid) Removes the quest from the
player.

Player.RemoveQuest(“base_myquest”);

FindItem (itemtypeid,amount) The player finds an item (or more
items).

Player.FindItem(“base_mysword”,2);

ReceiveItem (itemtypeid,amount) The player received an item (or
more items).

Player.ReceiveItem(“base_mysword”,2);

RemoveItem (itemtypeid,amount) The player loses an item (or
more items).

Player.RemoveItem(“base_mysword”,2);

HasItem (itemtypeid) Whether the player has the
specified amount of items of the
specified item type

If(Player.HasItem(“base_mysword”,2))
 Message(“Yeah you have two of them.”);

AddXp (value) The player receives xp (the value
cannot be negative).

Player.AddXp(100);

RemoveXp (value,canberestored) The player loses xp (the value
cannot be negative). The
“canberestored” parameter
indicates whether the lost xp can
be restored later.

Player.RemoveXp(100,1);

RestoreSavedXp () Restored the saved xp. Player.RestoreSavedXp();
HasSavedXp () Whether the player has saved xp. If(Player.HasSavedXp())

 Message(“You could restore the lost xp…”);
FindGold (amount) The player finds gold. Player.FindGold (10);
ReceiveGold (amount) The player receives gold. Player.ReceiveGold (10);
RemoveGold (amount) The player loses some gold. Player.RemoveGold (10);

GetGold () Returns the player’s gold. Message(“You have “ + Player.GetGold() +
 “ gold.”);

GetSkillValue (skillid) Returns the specified skill’s
value.

Skill=Player.GetSkillValue(“Perception”);

AddSkillValue (skillid,value) Adds the value to the specified
skill’s value of the player.

Player.AddSkillValue(“Perception”,1);

AddSpell (spelltypeid) The player learns a spell. Player.AddSpell(“base_myspell”);
RemoveSpell (spelltypeid) The player forgets a spell. Player.RemoveSpell(“base_myspell”);
KnowsSpell (spelltypeid) Returns whether the player

knows the specified spell.
If(Player.KnowsSpell(“base_myspell”))
 Message(“You know what spell already.”);

AddAbility (abilitytypeid) The player receives an ability. Player.AddAbility(“base_myability”);
RemoveAbility (abilitytypeid) The player loses an ability. Player.RemoveAbility(“base_myability”);
HasAbility (abilitytypeid) Whether the player has the

specified ability.
If(Player.HasAbility(“base_myability”))
 Message(“You already have that ability.”);

GetAttributeValue (attributename) Returns the specified attribute’s
value of the player.

Str=Player.GetAttributeValue(“strength”);

AddAttributeValue (attributename) Adds the value to the specified
attribute’s value of the player.

Player.AddAttributeValue(“strength”,1);

Move (mapobjid) Moves the player to the specified
object’s position.

Player.Move(“base_targetobj”);

MoveMode (mapobjid,movemode) Moves the player to the specified
object’s position, using the
specified method.
The method can be one of the
following: “” (empty string),
“teleport”, “fall”, “ladderdown”,
“ladderup”, “stairdown”, “stairup”

Player,MoveMode(“base_targetobj”,”teleport”);

MoveQuestion (mapobjid,question) Asks the player whether it wants
to move the specified object’s
position.

Player.MoveQuestion(“base_targetobj”,
 “Do you want to go there?”);

Turn (direction) Turns the player to the specified
direction.

Player.Turn(“north”);

MovePos (x,y) Moves the player to the specified
x,y position.

Player.MovePos(5,5);

GetPosX () Returns the player’s X
coordinate.

X=Player.GetPosX();

GetPosY () Returns the player’s Y
coordinate.

Y=Player.GetPosY();

InfectDisease (diseaseid) Infects the player with the
specified disease.

Player.InfectDisease(“base_mydisease”);

CureDisease (diseaseid) Cures the player of the specified
disease.

Player.CureDisease(“base_mydisease”);

IsDiseased (diseaseid) Returns whether the player has
been infected by the specified
disease (can be empty – for
checking any diseases).

If(Player.IsDiseased(“base_mydisease”))
 Message(“You are sick!”);

GetRace () Returns the player’s race. Race=Player.GetRace();
GetHp () Returns the player’s hp. Hp=Player.GetHp();
SetHp (value) Sets the player’s hp to the

specified value.
Player.SetHp(20);

AddHp (value) Adds the value to the player’s hp. Player.AddHp(20);
SetFullHp () Restores the full health of the

player.
Player.SetFullHp();

GetMaxHp () Returns the max hp of the player. Maxhp=Player.GetMaxHp();
GetSp () Returns the player’s sp. Sp=Player.GetSp();
SetSp (value) Sets the player’s sp to the

specified value.
Player.SetSp(20);

AddSp (value) Adds the value to the player’s sp. Player.AddSp(20);
SetFullSp () Restores the full mana of the

player.
Player.SetFullSp();

GetMaxSp () Returns the max sp of the player. Maxsp=Player.GetMaxSp();
IsGood () Returns whether the player’s

fame is above 0.
If(Player.IsGood())
 Message(“You’re a good person.”);

IsEvil () Returns whether the player’s
fame is below 0.

If(Player.IsEvil())
 Message(“You’re a terrible person.”);

IsUndead () Returns whether the player’s
race is Rasvim.

If(Player.IsUndead())
 Message(“Get away, beast!”);

ExecuteSpell (spelltypeid,skill) Executes a spell at the player. Player.ExecuteSpell(“base_myspell”);

GetFame () Returns the player’s fame. Fame=Player.GetFame();
AddFame (value) Adds the specified value to the

player’s fame (can be negative).
Player.AddFame(1);

GetCrime () Returns the player’s crime. Crime=Player.GetCrime();
ClearCrime () Clears the player’s crime. Player.ClearCrime();
AddCrime (value) Adds the value to the player’s

crime (can be negative)
Player.AddCrime (2);

GetOutfit () Returns the player’s outfit. Outfit=Player.GetOutfit();
GetLevel () Returns the player’s level. Level=Player.GetLevel();
GetAc () Returns the player’s ac. Ac=Player.GetAc();
MoveToJail () Moves the player to the nearest

jail. RESERVED function –
shouldn’t be used except by city
guards.

Player.MoveToJail();

MoveBack () Moves the player back to the
previous position.

Player.MoveBack();

ClearJail () Clears the player’s jail state.
RESERVED function – shouldn’t
be used except by city guards.

Player.ClearJail();

IsInJail () Returns the player’s jail state.
RESERVED function – shouldn’t
be used except by city guards.

Isinjail=Player.IsInJail();

IsParalyzed () Returns whether the player is
paralyzed.

If(Player.IsParalyzed())
 Message(“You’re paralyzed.”);

IsPosioned () Returns whether the player is
poisoned.

If(Player.IsPoisoned())
 Message(“You’re poisoned.”);

IsCursed () Returns whether the player is
cursed.

If(Player.IsCursed())
 Message(“You’re cursed.”);

IsMale() Returns whether the player is
male.

If(Player.IsMale())
 Message(“Hey, pal, wazzup?”);

Map object commands

Command Meaning Example
IsOpened () Returns whether the dungeon

door is opened.
If(base_mydoor.IsOpened())

Open () Opens the dungeon door. Base_mydoor.Open();
Close () Closes the dungeon door. Base_mydoor.Close();
GetLockedState () Returns the locked state of the

object (dungeon door/city
door/city window).
Can be 0-101. 101 means
magical (cannot be opened by
lockpick/spell).

If(Base_mydoor.GetLockedState()==0)

SetLockedState (value) Sets the locked state of the
object (dungeon door/city
door/city window). Can be 0-
101. 101 means magical
(cannot be opened by
lockpick/spell).

Base_mydoor.SetLockedState(10);

GetTrappedState () Returns the trapped state of the
object (dungeon door/
container/ lever/ shelf/ secret
switch/). Can be 0-101. 101
means magical (cannot be
disarmed by skill/spell).

If(Base_mydoor.GetTrappedState()==0)

SetTrappedState (value) Sets the trapped state of the
object ((dungeon door/
container/ lever/ shelf/ secret
switch/). Can be 0-101. 101
means magical (cannot be
disarmed by skill/spell).

Base_mydoor.SetTrappedState(10);

IsVisible () Returns whether the object is
visible

If(Base_mydoor.IsVisible())

SetVisible () Sets the object’s visibility. Base_mydoor.SetVisible();
SetHidden () Sets the object’s visibility. Base_mydoor.SetHidden();
IsOn () Returns whether the object’s on/ If(Base_mytorch.IsOn())

off state is “on” (could mean
various things – check the
object’s property page in the
editor)

SetOn () Sets the object’s on/off state. Base_mytorch.SetOn();
SetOff () Sets the object’s on/off state. Base_mytorch.SetOff();
GetState () Returns the object’s state

(0..255).
State=Base_myObj.GetState();

SetState (state) Sets the object’s state (0..255). Base_myObj.SetState(1);
ReceiveItem (itemtypeid,amount) The shelf receives an item (or

more items).
Base_myShelf.ReceiveItem(“base_mysword”,
1);

RemoveItem (itemtypeid,amount) The shelf loses an item (or more
items).

Base_myShelf.RemoveItem(“base_mysword”,
1);

HasItem (itemtypeid,amount) Returns whether the shelf has
the specified amount of the
specified item.

If(Base_myShelf.HasItem(“base_mysword”,2)
)

Monster command

Command Meaning Example
IsVisible () Returns whether the monster is

visible
Visible=IsVisible();

SetVisible () Sets the monster’s visibility SetVisible();
SetHidden () Sets the monster’s visibility SetHidden();
IsDead () Returns whether the monster is

dead
Dead=IsDead();

FindItem (itemtypeid,amount) The monster finds an item (or
more items).

FindItem(“base_mysword”,1);

ReceiveItem (itemtypeid,amount) The monster receives an item
(or more items).

ReceiveItem(“base_mysword”,1);

RemoveItem (itemtypeid,amount) The monster loses an item (or
more items);

RemoveItem(“base_mysword”,1);

HasItem (itemtypeid,amount) Returns whether the monster
has the specified item (specified
amount of)

If(HasItem(“base_mysword”,1))

StealGold () The monster steals gold from
the player. Not supported.

StealGold();

KnowsSpell (spelltypeid) Returns whether the monster
knows the specified spell.

If(KnowsSpell(“base_myspell”))

Move (mapobjid) Moves the monster to the
specified object’s position.

Move(“base_pos”);

Turn (direction) Turns the monster to the
specified direction (works only
for streetwalkers).

Turn(“north”);

MovePos (x,y) Moves the player to the
specified x,y position of the
current map.

MovePos(5,5);

GetPosX () Returns the X coordinate of the
monster (current map).

X=GetPosX();

GetPosY () Returns the Y coordinate of the
monster (current map).

Y=GetPosY();

InfectDisease (diseaseid) Infects the monster by the
specified disease.

InfectDisease(“base_disease”);

CureDisease (diseaseid) Cures the monster of the
specified disease.

CureDisease(“base_disease”);

IsDiseased (diseaseid) Returns whether the monster is
infected by the specified
disease (can be empty for
checking any diseases)

If(IsDiseased(“base_disease”))

GetHp () Returns the monster’s hp. Hp=GetHp();
SetHp (value) Sets the monster’s hp to the

specified value.
SetHp(20);

AddHp (value) Adds the value to the monster’s
hp.

AddHp(20);

SetFullHp () Restores the full health of the
monster.

SetFullHp();

GetMaxHp () Returns the max hp of the Maxhp=GetMaxHp();

monster.
IsUndead () Returns whether the monster’s

race is “Rasvim”
Undead=IsUndead();

ExecuteSpell (spelltypeid,skill) Execute the specified spell at
the monster (with a specified
skill value)

ExecuteSpell (“base_myspell”,20);

GetLevel () Returns the monster’s level. Level=GetLevel();
GetAc () Returns the monster’s ac. Ac=GetAc();
IsAggressive () Returns whether the monster is

aggressive.
Aggr=IsAggressive();

SetAggressive () Sets the monster as aggressive. SetAggressive();
SetPeaceful () Sets the monster as peaceful. SetPeaceful();
IsParalyzed () Returns whether the monster is

paralyzed.
Para=IsParalyzed();

IsPoisoned () Returns whether the monster is
poisoned.

Poisoned=IsPoisoned();

IsCursed () Returns whether the monster is
cursed.

Cursed=IsCursed();

Item commands

There are no specific Item commands – so in item scripts, you could use only the other family
commands. Note: item scripts are not supported.

	The Quest editor
- system architecture –
	The Quest architecture
	 Object types

	
 Identifiers in the game engine
	

Npc dialogue system

	Macros in responses
		Item type
	Checking the inventory
	Auto-items
	Item quality

	Weapon/all subclasses
	Outfit Quality
	Required alignment
	Monster families
	Monsters

	Monsters have limited own data – that’s why there could be hundreds of them around the world, still takes very low amount of memory. They have Hp information (while the Max Hp comes from the Monster Type), and the engine keeps a database about Monster diseases and other modifiers globally – since (normally) just a few of them have any diseases.
They have a have flags, btw:
- Aggressive: the Monster Type can have the Aggressive flag set, while the actual monster can be peaceful (and you can change it from script).
- Visible: They’re all visible initially, you can also change it from script.
	Scripting monsters
	Monster -> NPC
	Monster’s resistance/spell knowledge/other modifiers

	Script architecture
	Script commands

There are several script command families, explained below.

	Global commands

These commands modify the global system or requests its properties.
		Player commands
		Map object commands
		Monster command
		Item commands

